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The basic reproductive ratio, R0, is defined as the expected number of secondary infections
arising from a single individual during his or her entire infectious period, in a population of
susceptibles. This concept is fundamental to the study of epidemiology and within-host
pathogen dynamics. Most importantly, R0 often serves as a threshold parameter that
predicts whether an infection will spread. Related parameters which share this threshold
behaviour, however, may or may not give the true value of R0. In this paper we give a brief
overview of common methods of formulating R0 and surrogate threshold parameters from
deterministic, non-structured models. We also review common means of estimating R0 from
epidemiological data. Finally, we survey the recent use of R0 in assessing emerging diseases,
such as severe acute respiratory syndrome and avian influenza, a number of recent livestock
diseases, and vector-borne diseases malaria, dengue and West Nile virus.
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1. INTRODUCTION

The basic reproductive ratio, R0, is a key concept in
epidemiology, and is inarguably ‘one of the foremost
and most valuable ideas that mathematical thinking
has brought to epidemic theory’ (Heesterbeek & Dietz
1996). Originally developed for the study of demo-
graphics (Böckh 1886; Sharp & Lotka 1911; Dublin &
Lotka 1925; Kuczynski 1928), it was independently
studied for vector-borne diseases such as malaria (Ross
1911; MacDonald 1952) and directly transmitted
human infections (Kermack & McKendrick 1927;
Dietz 1975; Hethcote 1975). It is now widely used in
the study of infectious disease, and more recently, in
models of in-host population dynamics. Two excellent
surveys of the tangled history of R0 can be found in
Dietz (1993) and Heesterbeek (2002). An excellent
overview of the demographic history can be found in
Smith & Keyfitz (1977).

As a general definition, R0 is the expected number of
secondary individuals produced by an individual in its
lifetime. The interpretation of ‘secondary’, however,
depends on context. In demographics and ecology, R0 is
taken to mean the lifetime reproductive success of a
typical member of the species. In epidemiology, we take
R0 to mean the number of individuals infected by a
single infected individual during his or her entire
infectious period, in a population which is entirely
susceptible. For in-host dynamics, R0 gives the number
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of newly infected cells produced by one infected cell
during its lifetime, assuming all other cells are
susceptible.

From this definition, it is immediately clear that
when R0!1, each infected individual produces, on
average, less than one new infected individual, and we
therefore predict that the infection will be cleared from
the population, or the microparasite will be cleared
from the individual. If R0O1, the pathogen is able to
invade the susceptible population. This threshold
behaviour is the most important and useful aspect of
the R0 concept. In an endemic infection, we can
determine which control measures, and at what
magnitude, would be most effective in reducing R0

below one, providing important guidance for public
health initiatives.

The magnitude of R0 is also used to gauge the risk of
an epidemic or pandemic in emerging infectious
disease. For example, the estimation of R0 was of
critical importance in understanding the outbreak
and potential danger from severe acute respiratory
syndrome (SARS) (Choi & Pak 2003; Lipsitch et al.
2003; Lloyd-Smith et al. 2003; Riley et al. 2003). R0 has
been likewise used to characterize bovine spongiform
encephalitis (BSE) (Woolhouse & Anderson 1997;
Ferguson et al. 1999; de Koeijer et al. 2004), foot and
mouth disease (FMD) (Ferguson et al. 2001; Matthews
et al. 2003), novel strains of influenza (Mills et al. 2004;
Stegeman et al. 2004) and West Nile virus (Wonham
et al. 2004). The incidence and spread of dengue (Luz
et al. 2003), malaria (Hagmann et al. 2003), Ebola
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(Chowell et al. 2004b) and scrapie (Gravenor et al.
2004) have also been assessed using R0 in recent
literature. Topical issues such as the risks of indoor
airborne infection (Rudnick & Milton 2003), bioterror-
ism (Kaplan et al. 2002; Longini et al. 2004), and
computer viruses (Lloyd & May 2001) also rely on this
important concept.

Ongoing theoretical work has extended R0 for a
range of complex models, including stochastic and finite
systems (Nasell 1995), models with spatial structure
(Mollison 1995b; Lloyd & May 1996; Keeling 1999) or
age-structure (Anderson & May 1991; Diekmann &
Heesterbeek 2000; Hyman & Li 2000), and macro-
parasite models (Anderson & May 1991; Diekmann &
Heesterbeek 2000). We note, however, that the
practical use of R0 has been, for the most part,
restricted to very simple deterministic systems. For
comparison with this ‘field’ literature in epidemiology,
we restrict our attention in the following sections to
deterministic, unstructured microparasite models.

The purpose of this paper is to review the various
methods currently in use for the derivation of R0,
highlighting the difference between R0 and surrogate
parameters with equivalent threshold behaviour. We
then discuss methods commonly used to estimate R0

from incidence data. Finally, we give an overview of the
recent use of R0 in assessing emerging and endemic
disease. Our aim in this final section of the paper is to
determine the usefulness of this endeavour: to what
extent has estimating R0 informed public health
measures?
2. DERIVATIONS OF R0 FROM A
DETERMINISTIC MODEL

The derivation of R0 from a non-spatial, deterministic
model is fairly straightforward from first principles.
The survival function method (§2.1) gives the ‘gold
standard’ determination of R0, and is applicable even
when non-constant transmission probabilities between
classes (i.e. non-exponential lifetime distributions) are
assumed. For models which include multiple classes of
infected individuals, the next generation operator is the
natural extension of this approach (§2.2). However, we
note that the definition of R0 may have more than one
possible interpretation in the multi-class system, as
discussed below.
2.1. Survival function

The method we describe as the ‘survival function’
approach is, in essence, a first-principles definition of
R0, and thus has a rich history of use. The approach is
described in detail in Heesterbeek & Dietz (1996), who
also give an interesting historical overview.

Consider a large population and let F(a) be the
probability that a newly infected individual remains
infectious for at least time a. This is called the survival
probability. Also, let b(a) denote the average number of
newly infected individuals that an infectious individual
will produce per unit time when infected for total time a.
J. R. Soc. Interface (2005)
Then, R0 is given by:

R0 Z

ðN
0
bðaÞFðaÞda: (2.1)

As this expression yields R0 by definition, this
approach will be appropriate for any model in which
closed-form expressions can be given for the underlying
survival probability, F(a), and the infectivity as a
function of time, b(a). In particular, it is straightfor-
ward to handle situations in which infectivity depends
on time, since infection, or other transmission prob-
abilities between states, vary with time. Thus, this
derivation of R0 is not restricted to systems described
by ordinary differential equations (ODEs).

This method can also be naturally extended to
describe models in which a series of states are involved
in the ‘reproduction’ of an infected individual. As an
example of the latter technique, consider epidemic
modelling of malaria. An infected human may pass the
infection to a mosquito, which may in turn infect more
humans. This complete cycle must be taken into
account in our derivation of R0, which we might expect
to yield the total number of infected humans produced
by one infected human. In general, if only two distinct
infectious states are involved in such an infection cycle,
F(a) can be defined as the probability that an
individual in state 1 at time zero produces an individual
who is in state 2 until at least time a. Similarly, b(a) is
the average number of new individuals in state 1
produced by an individual who has been in state 2 for
time a. In modelling malaria, F(a) could be the
probability that a human infected at time zero produces
an infected mosquito which remains alive until at least
time a. In more concrete terms, F(a) would be the
integral of the following product:

FðaÞZ
ða
0
probðhuman infected at time 0

exists at time tÞ
!probðhuman infected for tot: time t

infects mosquitoÞ
!probðinfected mosquito lives to be

age aK tÞ dt

(2.2)

while b(a) would simply be the average number of
humans newly infected by a mosquito which has been
infected for time a. (Note that we could also take the
infected mosquito as state 1, deriving an analogous
expression which would yield the same value of R0.)

Unfortunately, derivations such as equation (2.2)
become increasingly cumbersome as this method is
extended to infection cycles involving three or more states
(Hethcote &Tudor 1980; Lloyd 2001b; Huang et al. 2003).
In these situations, the next generation operator offers an
elegant solution, as described in the following section.
2.2. Next generation method

A rich history in the literature addresses the derivation
of R0, or an equivalent threshold parameter, when more
than one class of infectives is involved (Rushton &
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Mautner 1955; Hethcote 1978; Nold 1980; Hethcote &
Thieme 1985).

The next generation method, introduced by
Diekmann et al. (1990), is a general method of deriving
R0 in such cases, encompassing any situation in which
the population is divided into discrete, disjoint classes.
The next generation operator can thus be used for
models with underlying age structure or spatial
structure, among other possibilities. For typical
implementations, continuous variables within the
population are approximated by a number of discrete
classes. This approximation assumes that transmission
probabilities between states are constant, or equiva-
lently, that the distribution of residence times in each
state is exponential.

The next generation operator is fully described in
Diekmann & Heesterbeek (2000) and a number of
salient cases are elucidated in van den Driessche &
Watmough (2002). Recent examples of this method are
given in Matthews et al. (1999), Porco & Blower (2000),
Castillo-Chavez et al. (2002), Hill & Longini (2003) and
Wonham et al. (2004).

In the next generation method, R0 is defined as
the spectral radius of the ‘next generation operator’.
The formation of the operator involves determining
two compartments, infected and non-infected, from
the model. In this section, we outline the steps
needed to find the next generation operator in matrix
notation (assuming only finitely many types), and
then employ this method for a susceptible–exposed–
infectious–recovered (SEIR) model and a model of
malaria. (For a detailed explanation on the formation
of the next generation operator when there are
infinitely many types see pp. 95–96 of Diekmann &
Heesterbeek (2000).)

Let us assume that there are n compartments of
which m are infected. We define the vector �xZxi,
iZ1,.,n, where xi denotes the number or proportion of
individuals in the ith compartment. Let Fið�xÞ be the
rate of appearance of new infections in compartment i
and let Við�xÞZV K

i ð�xÞKV C
i ð�xÞ; where Vi

C is the rate
of transfer of individuals into compartment i by all
other means and Vi

K is the rate of transfer of
individuals out of the i th compartment. The difference
Fið�xÞKVið�xÞ; gives the rate of change of xi. Note that Fi

should include only infections that are newly arising,
but does not include terms which describe the transfer
of infectious individuals from one infected compart-
ment to another.

Assuming that Fi and Vi meet the conditions
outlined by Diekmann et al. (1990) and van den
Driessche & Watmough (2002), we can form the next
generation matrix (operator) FVK1 from matrices of
partial derivatives of Fi and Vi . Specifically,

F Z
vFiðx0Þ
vxj

� �
and V Z

vViðx0Þ
vxj

� �
;

where i, jZ1,.,m and where x0 is the disease-free
equilibrium. The entries of FVK1 give the rate at
which infected individuals in xj produce new infections
in xi , times the average length of time an individual
spends in a single visit to compartment j. R0 is given
J. R. Soc. Interface (2005)
by the spectral radius (dominant eigenvalue) of the
matrix FVK1.

As an example, let us consider an SEIR model. Since
we are concerned with the populations that spread the
infection we only need to model the exposed, E, and
infected, I, classes. Let us define the model dynamics
using the following equations:

_E Z bSI KðmCkÞE;

_I Z kEKðgCmÞI :

)
(2.3)

where m is the per capita natural death rate, b is the
efficacy of infection of susceptible individuals S, k is the
rate at which a latent individual becomes infectious and
g is the per capita recovery rate. For this system

F Z
0 bl=m

0 0

 !

(where l is the birth rate of susceptibles) and

V Z
mCk 0

Kk gCm

 !
;

and thus

R0;N Z
kbl

ðmCkÞðmCgÞm : (2.4)

Note that this is also the value of R0 determined by the
survivor function method.

For the second example, we consider a model of
malaria. Let us describe the rate of change of the
infected human, HI, and mosquito, MI, populations by
the following equations:

_H I Z bMHMIHS KðmH CaCsÞHI;

_M I Z bHMMSHI KmMMI:

)
(2.5)

Infected humans are produced by the infection of
susceptible humans, HS, by an infected mosquito with
efficacy bMH. We assume that they die with natural
death rate mH, die due to infection with rate s

and recover from the infection with rate a. Infected
mosquitoes are produced when susceptible mosquitoes,
MS, bite infected humans. We assume that this process
has efficacy bHM and assume that infected mosquitoes
can only leave the infected compartment by
dying naturally with rate mM. For this system we find
that

F Z
0 bMHHSð0Þ

bHMMSð0Þ 0

 !
;

and

V Z
mH CaCs 0

0 mM

 !
:

SinceV is non-singular we can determineVK1. Thus,

R0;M Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bMHbHMHSð0ÞMSð0Þ
ðmH CaCsÞmM

s
: (2.6)
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For comparison, we also compute the value of R0 for
this system using the survival method:

R0;S Z
bMHbHMHSð0ÞMSð0Þ
ðmH CaCsÞmM

Z ðR0;MÞ2: (2.7)

The difference here is a matter of definition: the
survival function gives the total number of infectives in
the same class produced by a single infective of that
class, while the next generation operator gives the mean
number of new infectives per infective in any class, per
generation. Values corresponding to the latter definition
thus depend on the number of infective classes in the
infection cycle. We note that the latter definition is
widely accepted as standard in the biomathematics
literature (e.g. Diekmann & Heesterbeek 2000), but the
former definition has also been used extensively
(Anderson & May 1991; Barbour & Kafetzaki 1993;
Nowak & May 2000), and is still in standard use in
epidemiology (Hagmann et al. 2003; Luz et al. 2003) and
immunology (Huang et al. 2003).
3. DERIVATIONS OF THRESHOLD CRITERIA

As mentioned in §1, the most important feature of R0 is
that it reflects the stability of the disease-free equili-
brium. When R0!1, this equilibrium is stable and we
predict that the pathogen will be cleared.

Surveying the recent literature, it quickly becomes
apparent that a number of related quantities, all of
which share this ‘threshold’ behaviour, are used as
surrogates for R0. For example, R0

n (nO0) will give an
equivalent threshold, but does not give the number of
secondary infections produced by a single infectious
individual.

The methods outlined in the following section each
derive, from a deterministic model, a quantity which
shares this predictive threshold with R0. For some
models, thesemethodswill, in fact, yield the true value of
R0, but this is by nomeans guaranteed. If a prediction of
whether the pathogen will persist or be cleared is the
only feature of interest, a threshold criterion is
sufficient—however, these methods cannot be used to
compare risks associated with different pathogens.

We outline three such threshold criteria below,
giving examples where each is used in the literature.
1Note that this derivation of R0,E differs from that in Blower et al.
(1998) due to a missing s in eqn. (7), p. 678 of that manuscript.
3.1. Jacobian and stability conditions

A predictive threshold is often found through the study
of the eigenvalues of the Jacobian at the disease-free
equilibrium (for an overview see Diekmann &
Heesterbeek 2000). This is a simple, widely usedmethod
for ODE systems. Using this method, a parameter is
derived from the condition that all of the eigenvalues of
the Jacobian have a negative real part. This can easily be
done using the characteristic polynomial and the
Routh–Hurwitz stability conditions.

The Jacobian method clearly allows us to derive a
parameter that reflects the stability of the disease-free
equilibrium. The parameter obtained in this way,
however, may or may not reflect the biologically
meaningful value ofR0. An example where the Jacobian
method does not yield R0 is described in detail in
J. R. Soc. Interface (2005)
Diekmann & Heesterbeek (2000; exercise 5.43). Despite
this caveat, the technique remains popular; recent uses
of this criterion in the literature include Porco &
Blower (1998); Murphy et al. (2002); Kawaguchi et al.
(2004); Laxminarayan (2004) and Moghadas (2004). In
Roberts & Heesterbeek (2003), it is suggested that if
this threshold parameter does not have the same
biological interpretation as the dominant eigenvalue
of the next generation matrix, then it should not be
called the basic reproductive ratio, nor denoted R0.
3.2. Existence of the endemic equilibrium

Similarly, we can often derive a condition based on
parameter values such thatwhen the condition holds, the
endemic equilibrium exists, whereas when the condition
is false, only the disease-free equilibrium exists. Math-
ematically, we are referring to a transcritical bifurcation,
and we know that the condition must switch from being
false to true at parameter values which give R0Z1.

For example, consider the model of herpes simplex
virus described in Blower et al. (1998). For simplicity,
we can ignore drug resistance (i.e. p1Zp2Z0). This
model then consists of three differential equations

dX

dt
ZpKXcbS

HS

N
KXm;

dQS

dt
ZHSðsCqÞKQSðmCrÞ;

dHS

dt
ZXcbS

HS

N
KHSðmCsCqÞCrQS;

where X is the susceptible population, QS represents
those infected with the virus in the non-infection latent
state, HS represents those infected with the virus in
infectious state and NZXCQSCHS. (Other letters are
positive parameters.) At equilibrium,

N Z
p

m
;

X Z
p

m
K

mCsCqCr

mCr
HS;

QS Z
sCq

mCr
HS:

Thus, either HSZ0 (the disease-free equilibrium) or

HS Z
p

m

mCr

mCsCqCr
K

m

cbS

� �

(the endemic equilibrium). It follows that the endemic
equilibrium only exists when

R0;EhcbS
r Cm

mðrCmCsCqÞ

� �
O1;

and does not exist if the reverse inequality holds.1

Outbreaks of infectious periods are brief, but
continue over the course of the patients’ lifetime, with
the virus quiescent at other times. This makes
calculating R0 from other methods quite complicated.
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3.3. Constant term of the characteristic
equation

For more complex models, the characteristic equation
may be of the form

ln CpnK1l
nK1 C/Cp1lCp0 Z 0;

with p1, p2,.,pnK1O0. In this special case, nK1 roots
of the polynomial have negative real part. When p0Z0,
the nth root, or largest eigenvalue, is zero, when p0O0,
all eigenvalues are negative, whereas when p0!0, the
largest eigenvalue has positive real part. Thus, the
stability is determined solely by the sign of the constant
term of the characteristic equation.

For example, consider the multi-strain tuberculosis
model described in Blower & Chou (2004). In eqn (6) in
their appendix, their characteristic polynomial is

ðlCm0Þ
YN
iZ1

½l2 CBilCCi�Z 0;

where

Bi ZmL
i CmT

i KbTi S
� Cni Cci Cki;iC1;

Ci Z ðci CmT
i KbTi S

� Cki;iC1ÞðmL
i CniÞKbLi niS

�;

and all parameters non-negative. Note that Bi has the
property that BiO0 when CiZ0. For each strain i, the
equation for CiZ0 is rearranged to produce

R0ðiÞZ S� ðbTi CbLi Þni CbTi m
L
i

ðni CmL
i Þðci Cki;iC1 CmT

i Þ
:

Each R0(i) value has the property that R0(i)Z1 when
CiZ0, R0(i)!1 when CiO0 and R0(i)O1 when Ci!0.

Calculating an R0(i) for each strain using the
methods from previous sections is extremely difficult,
as is calculating a formula for the endemic equilibrium.
However, the Jacobian matrix at the disease-free
equilibrium is relatively tractable, so an R0(i) for each
strain can be calculated from the constant term. This
method generally allows for the calculation of threshold
criteria when other methods fail.
4. ESTIMATIONS FROM EPIDEMIOLOGICAL
DATA

The previous sections addressed methods of formulat-
ing R0 in terms of the parameters of some deterministic
model. In order to estimate the value of R0 from
incidence data, however, we require numerical esti-
mates of a number of these parameters. Typically,
death rates and recovery rates are readily estimated; in
contrast, the contact or transmission rate is difficult to
determine from direct measures. For this reason, R0 is
rarely estimated using formulae such as equations (2.6)
and (2.7) above. We outline a number of alternative
approaches for estimating R0 from available data in
§§4.1–4.4. These approaches typically involve simplify-
ing assumptions to reduce the number of unknown
parameters. For more complete overviews of these
techniques, we refer the reader to Mollison (1995a),
Diekmann & Heesterbeek (2000) and Hethcote (2000).
J. R. Soc. Interface (2005)
4.1. Susceptibles at endemic equilibrium

This method assumes that an endemic equilibrium is
attained and uses the prevalence of the infection at this
equilibrium to estimate R0. Following Mollison’s
(1995a) derivation, we consider a single infected
individual and note that the number of successful
contacts (in which the infection is passed on) for that
individual should be given by R0ps, where ps is
the probability that a given contact is with a
susceptible. At equilibrium, the average number of
new infections per infected individual must be exactly
one, allowing us to write R0Z1/ps. Under the assump-
tion of homogenous mixing, the unknown probability,
ps, can be estimated as the fraction of the host
population that is susceptible at the endemic equili-
brium. This yields an extremely simple estimate of the
basic reproductive ratio, which has been used exten-
sively (see Anderson & May (1991) for review).

An interesting point here is that R0 reflects not only
the behaviour of the system at the uninfected equili-
brium (which is apparent by definition), but may also,
under certain assumptions, reflect important features of
the endemic equilibrium. Similar to other ODE
methods, we must first assume that the host population
is homogenous, that is, all hosts have intrinsically
similar epidemiological properties, independent of age,
genetic make-up, geography, and so on.We also assume
mass-action transmission, specifically, that the number
of contacts per infective is independent of the number of
infectives. The accuracy of this estimate will clearly
depend on the degree to which these assumptions hold;
if infectivity or mortality vary with age, for example,
the approximation suffers.

Mathematically, this method may seem unrealistic
at first glance, asR0!1 would imply that the fraction of
susceptibles is greater than one. This is because there is
a transcritical bifurcation at R0Z1 and the number of
susceptibles of the ‘endemic’ equilibrium is actually
negative. During this portion of the bifurcation
diagram, the uninfected equilibrium is stable, and
hence the initial condition ensures that negative
individuals cannot be reached. Practically, this means
that when R0!1 we would never find a population at
the endemic equilibrium, and could not apply this
method. (Note that when the assumption of mass-
action transmission is relaxed, a backward bifurcation
may occur at R0Z1, and diseases with R0!1 may
persist (Dushoff 1996; Dushoff et al. 1998).)

Recent examples of this method include Heesterbeek
(2003) and Ferguson et al. (2001).

4.2. Average age at infection

A related approach, also based on the endemic
equilibrium, is that R0 can be estimated as L/A,
where L is the mean lifetime and A is the mean age of
acquiring the disease (Dietz 1975). A derivation for this
simple relation is also provided byMollison (1995a) and
Hethcote (2000); for further discussion, see Anderson &
May (1991) and Brauer (2002). In brief, we must
assume that all individuals are born susceptible, that
after acquiring the disease they are no longer suscep-
tible, that the population is at the endemic equilibrium
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(i.e. R0O1) and that homogenous mixing, particularly
among age groups, occurs. While this strong set of
assumptions might never be fully realized in a practical
setting, the usefulness of this approach is clear since
both L and A are readily measured. This method was
recently used to estimate R0 for endemic canine
pathogens (Laurenson et al. 1998).
4.3. The final size equation

While the previous two methods estimate R0 from the
endemic equilibrium, the final size equation is appli-
cable to closed populations only, where the infection
leads either to immunity or death. In this situation, the
number of susceptibles can only decrease and the final
fraction of susceptibles, s(N), can be used to estimateR0:

R0 Z
ln sðNÞ
sðNÞK1

:

This was first recognized by Kermack &McKendrick
(1927); for a detailed derivation and discussion, see
Diekmann & Heesterbeek (2000), Hethcote (2000) and
Brauer (2002). This estimate holds when the disease
itself does not interfere with the contact process, or
when contact intensity is proportional to population
density.

4.4. Calculation from the intrinsic growth rate

Finally, R0 may be determined from the intrinsic
growth rate of the infected population. This growth
rate, often denoted r0, is the rate at which the total
number of infectives, I, grows in a susceptible popu-
lation, such that dI/dtZr0I. We note that this is an
implicit definition of r0, and thus from a modelling
perspective using r0 is seldom elegant.

Using incidence data, however, r0 can often be
approximately measured from the growth rate of the
infected class, and R0 can subsequently be estimated
from r0. There are several possible problems with this
approach: firstly, stochastic fluctuations in the early
stages of the epidemic can obscure the measure of r0
(see Heffernan & Wahl in press); secondly, reporting
inaccuracies are very likely to bias the incidence data.
Finally, even when r0 can be measured with some
confidence, the relationship between R0 and r0 is highly
model dependent.

In the simplest possible models, when infectivity is
constant throughout the infectious period, R0 can be
estimated as 1Cr0L, where L is the expected duration
of the infectious period. (The ‘one’ is necessary in this
expression because R0 reflects the total number of new
infections, whereas the overall growth rate r0 includes
the death of the founding individual.) For more
complex models, the relation between r0 and R0 can
be derived by expressing both in terms of the model
parameters, exploiting that fact that the spectral radius
of the Jacobian, evaluated at the disease-free equili-
brium, gives r0. (This is apparent from the definition of
r0.) We also note that r0 itself can be used as a threshold
parameter, since R0!1 implies r0!0. Thus, the
condition r0!0 is actually equivalent to the ‘Jacobian’
method described in §3.1.
J. R. Soc. Interface (2005)
As an example, consider Nowak et al. (1997) and
Lloyd (2001a), who studied the within-host dynamics of
viral disease. From standard models of viral dynamics,
they find that the relationship between R0 and r0 is

R0 Z 1C
r0ðr0 CaCuÞ

au
; (4.1)

where a is the death rate of the infected cells and u is the
clearance rate of the virions. If r0Ca/u then the
relation approaches

R0 Z 1C
r0
a
: (4.2)

Since 1/a is the expected lifetime of an infected cell, this
expression is consistent with our previous approxi-
mation of R0.

This method proves useful since r0 can be readily
estimated from viral load data, for in-host models, or
from incidence data in epidemiology. A number of
recent studies have used this approach, including
Pybus et al. (2001) and Lipsitch et al. (2003).
5. RECENT USE OF R0 IN THE EPIDEMIOLOGY
OF MICROPARASITES

5.1. SARS and influenza

5.1.1. SARS. The emergence of SARS underscored the
need for careful epidemiological modelling, in order to
better understand and contain such novel pathogens.
A number of models were developed to study SARS and
to compute R0 for outbreaks in Hong Kong, Singapore
and Canada.

Lipsitch et al. (2003) estimated R0 for the outbreaks
in Canada and Singapore, including the effects of super-
spreaders (infected individuals who directly infect a
large number of people). The exponential growth rate of
the cumulative number of cases in the epidemic was
taken as an estimate for r0. R0 was then estimated by
computing the largest eigenvalue of a linearized SEIR
model (assuming no depletion of susceptibles), and
expressing this spectral radius as a function of R0, the
ratio of the infectious period to the serial interval, f, and
the length of the serial interval, L. This technique
yielded the following equation for R0:

R0 Z 1Cr0LC f ð1K f Þðr0LÞ2:

R0 were approximately 2.2–3.6 for serial intervals of
8–12 days. The serial intervals were estimated from the
data, but at the time were not well defined for SARS.
A strength of this approach is that the various
parameters of the SEIR model ‘collapse’, such that
epidemiological estimates of only three parameters are
necessary: r0, f and L. Although the usual problems of
underreporting before an epidemic, overreporting
during an epidemic and stochasticity are unavoidable
in estimates of r0, Lipsitch et al. conducted thorough
sensitivity analyses, concluding that R0 will still have a
relatively low value. This suggests that the spread of
SARS can be contained when proper control protocols
are put into place.
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Lipsitch et al. then extended the SEIR model to
explore the effects of isolation of symptomatic cases and
quarantine of asymptomatic contacts on the spread of
the disease. They found that to reduce R0 from
approximately 3 to 1, isolation and quarantine must
reduce total infectiousness by at least two-thirds.
Further analysis of these control policies enabled
Lipsitch et al. to conclude that quarantine would
impose a large burden on the population if SARS was
allowed to spread over a long period with an R0O1 in a
susceptible population. Individuals could be quaran-
tined multiple times over the course of the infection or
for very long periods of time. These conclusions offer
useful guidance for public health initiatives, but as
several parameters of this model are unknown, Lipsitch
et al. were unable to give concrete estimates for the
levels of quarantine and isolation necessary to decrease
the value of R0 below one.

Chowell et al. (2003) developed a system of ODEs to
describe the spread of SARS in the three geographical
populations mentioned above. Their model includes
two classes of susceptibility, low risk and high risk, and
also includes two types of infected individuals, sympto-
matic and asymptomatic, which differ in their rate of
diagnosis and mode of transmission. The main goal of
this study was not to determine R0, but to estimate the
diagnostic rate and isolation effectiveness for the three
separate regions, with an emphasis on the Toronto
outbreak. These two parameter values were estimated
by first determining the exponential growth rates from
SARS incidence data in all three regions and fitting the
model to the data assuming that all of the other model
parameters were roughly constant between regions. In a
brief section the parameter estimates were used to
calculate R0 using the next generation approach. R0

was 1.2 for Hong Kong, approximately 1.2 for Toronto
and 1.1 for Singapore. A weakness of this model is that
R0 depends on estimating many (approximately 10)
model parameters. These estimates of R0 are compar-
able to those estimated by Lipsitch et al. (2003) when
the latter group assumed the serial interval to be small,
around 4 days. However, the serial interval in this study
was taken to be between 7 and 10 days. This disparity
was not discussed in detail.

Using the same model, Chowell et al. (2004a)
conducted sensitivity analyses for R0, quantifying the
effects of changes in the model parameters. They found
that the transmission rate and the relative infectious-
ness after isolation have the largest effect on R0. They
also found that it is unlikely that the implementation of
a single control measure will reduce R0 below one. The
practical conclusion of this work is that control
measures that affect the diagnostic rate, relative
infectiousness after isolation and the per capita
transmission rate should be implemented.

In another study (Riley et al. 2003), R0 was
determined by fitting a stochastic mathematical
model to incidence data for SARS. Riley et al.
developed a stochastic, compartmental metapopulation
model capturing both spatial variability and the growth
dynamics at the early stages of the epidemic. Using
data from the Hong Kong epidemic, Riley et al.
determined probability distributions for transitions
J. R. Soc. Interface (2005)
between the model compartments of susceptible, latent,
infectious, hospitalized, recovered and deceased indi-
viduals. R0 was calculated using multiple realizations of
the model to be approximately 3.

Riley et al. also found that the SARS control
measures were effective and, most importantly, con-
cluded that the Hong Kong epidemic was under control
by early April. This conclusion was made by determin-
ing R0 when control measures were implemented. An
advantage of this approach is that multiple realizations
of the model can generate predicted case incidence
time-series, quantifying any reduction in the trans-
mission rates after control measures are in place.
However, this complex model relies heavily on the
quality of the data. Another drawback of this model is
that the effects of superspreaders were not included.

Lloyd-Smith et al. (2003) developed a stochastic
model of a SARS outbreak in a community and its
hospital. The goal of this model was to evaluate contact
precautions, quarantine and isolation as containment
procedures while assuming a particular value of R0.
Using a value of R0z3 for the Hong Kong and
Singapore outbreaks they found that isolation alone
could control the spread of SARS if it met very
stringent requirements. However, they concluded that
the control measures that were most successful were
limiting contact between people in hospitals and
decreasing the number of contacts between people
inside and outside of the hospital.

Summarizing the results above, we can conclude
that the estimated value of R0 for SARS is relatively
low, suggesting that the epidemic can be controlled.
We can also conclude that the control policies studied
are most effective when used in combination. These
conclusions are reassuring and give direction to public
health initiatives. These results should be viewed with
some caution, however, as the data used in these
studies are limited, the models are complex, and
aspects of the virulence and persistence of SARS that
might affect public health initiatives have not yet been
addressed.

5.1.2. 1918 Pandemic influenza.Mills et al. (2004) used
mortality data to estimate R0 for the 1918 influenza
pandemic in 45 cities in the USA. Interestingly, this
approach relied on none of the mathematical techniques
described in previous sections; instead, the number of
susceptibles, incident infections and infectious hosts
were estimated using a discrete time simulation. Using
a case fatality proportion of 2%, the total number of
deaths was estimated and this was compared with
‘excess’ mortality data, that is, the number of deaths in
1918 above the median for 1910–1916. A value ofR0 was
determined which minimized the sum of squared
differences between the simulated and observed data.
The median estimate for R0 was 2.9.

It is interesting to note that in this study, one of the
most careful and recent investigations of R0 in the
literature, the authors relied on a very simple simu-
lation and least-squares fitting, rather than any more
sophisticated mathematical approaches. The advan-
tage of the simulation is that the many assumptions
which must be made are explicit, and their effects
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can be examined individually, as these authors have
done in extensive supplementary material. In all cases,
the sensitivity analyses predicted that the overall
conclusion of the work—that R0 was approximately
3–4—was robust.

As noted by the authors, various possible sources of
downward bias, including heterogenous mixing, inter-
vention measures, and the depletion of susceptibles, are
ignored in this approach. To correct for this, for each
city, the two weeks in which the growth rate of
mortality data was highest were also fit separately;
this increased the median estimate of R0 to 3.9. It seems
likely, however, that any heterogenous mixing and
intervention measures were in place during these two
weeks of rapid epidemic growth as well, since these
weeks were not always the first weeks of the epidemic.
Thus, this ‘extreme’ estimate of R0 is only the most
extreme value that can be observed from the data,
under the same assumptions regarding lack of control
measures and homogenous mixing. The extent to which
any control measures were in place and their mitigation
of R0 was not addressed.

The aim of the study was to evaluate the risk of an
impending pandemic from a novel strain of influenza.
The results suggest that control of such a pandemic will
be possible, given the ‘modest’ reproductive number of
the 1918 strain. From a statistical point of view,
however, R0 for the 1918 pandemic was a single
observation of an extreme value, and it is very difficult
to predict the magnitude of a single future extreme
value drawn from the same distribution. Thus,
the conclusions only hold under the assumption that a
future influenza strain will be ‘similarly’ infectious.
Nonetheless, it is important to have demonstrated
that even for the worst influenza pandemic in recent
history, R0 was probably not large relative to other
diseases.

5.1.3. Avian influenza. Stegeman et al. (2004) quanti-
fied between-flock transmission characteristics of high-
pathogenicity avian influenza, a virus in the Nether-
lands that led to the culling of 30 million birds in 2003.
R0 was calculated as the product of the infectious period
at flock level and the transmission rate at flock level;
however, neither parameter was measured directly.
Instead, the infectious period was estimated as the
period between the moment of detection and the
moment of culling, plus 4 days. The transmission
probability of the stochastic SEIR model was estimated
by means of a generalized linear model. An estimate of
the variance of R0 was used to calculate the confidence
interval for the period of infection and the transmission
probability. A variety of potential control measures
were evaluated.

The results of this study estimated that R0 reached
as high as 6.5 in some regions and was decreased to 1.2
after the outbreak. Although R0 still exceeded one,
between-flock transmission nevertheless decreased sig-
nificantly after the outbreak. This discrepancy between
the calculated value ofR0 and the ultimate course of the
epidemic suggested that control measures designed to
reduce the transmission rate were inadequate. It was
instead hypothesized that containment of the epidemic
J. R. Soc. Interface (2005)
was probably owing to the reduction in the number of
susceptible flocks caused by culling rather than
the reduction of the transmission rate by other control
measures. From these observations, it was suggested
that effective control in the future could be achieved
only by depopulation of the whole affected area.
5.2. Livestock disease

5.2.1. Bovine spongiform encephalopathy (BSE).
Bovine spongiform encephalopathy affects populations
of cattle and other livestock and may pose a threat to
human health. A number of models of BSE have
been analysed; these models include key transmission
routes and evaluate the efficacy of various control
policies.

Ferguson et al. (1999) developed a model to
describe the spread of BSE. The goal of this paper
was to demonstrate how different assumptions regard-
ing the infectivity of BSE affect R0. Two models of
infectivity that represent epidemiological extremes
were considered: the first assumes that infectivity
rises exponentially with a growth coefficient of two
per year throughout the incubation period of BSE;
the second assumes that infectivity is constant during
this time. Using the next generation approach,
Ferguson et al. estimated that R0z10–12 for the
first case and that R0z2–2.5 for the second. These
values were determined using a back calculation
model (see Gail & Rosenberg 1992) to estimate the
force of infection of BSE in Great Britain between
1980 and 1996. The transmission coefficient of BSE
was estimated using a model for infectivity as a
function of incubation stage.

Ferguson et al. also determined the effect that the
1988 ban on MBM (recycling of animals into ruminant-
based meat and bone meal) had onR0. They found that,
for both cases of infectivity, R0 was reduced to a value
of approximately 0.15. This result has important
implications as it shows that the spread of BSE can
be controlled for the extreme cases of infectivity,
implying that this will be true for all intermediate
models. These estimates of R0 also suggest that BSE
will not become endemic in the UK. A drawback of this
model is that it assumes that underreporting of BSE
cases does not exist after 1988. This assumption can
result in a lower value of R0. Also, the effects of
clustering were not modelled; instead, homogenous
mixing was assumed. However, Ferguson et al. con-
cluded that this would have only a minor effect on the
conclusions of the study.

In a more recent study by de Koeijer et al. (2004),
R0 was calculated for BSE assuming five different
transmission routes: horizontal, vertical, diagonal
(the disease can be spread to other animals close
by during a birth), feed-based transmission and
infectious material in the environment (use of
MBM as fertilizer). Separating the infected popu-
lation into two classes of infected individuals, those
that are infected from birth and those that become
infected by all other routes, de Koeijer et al.
determined the expected number of new infections
during the whole infectious period for both classes.
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These expressions were then used to formulate the
next generation matrix to determine R0. Using
parameter estimates from BSE data from the United
Kingdom and the Netherlands, values for R0 were
determined for separate outbreaks in 1986, 1991,
1995 and 1998. The estimated values of R0 were
approximately 14 and 0.7 in 1986 for the United
Kingdom and the Netherlands, respectively, whereas
R0 values were far less than unity in later years
when control measures were in effect.

This study also attempted to quantify the impact
of the control policies in use. They found that there
are three major control measures: a feed ban on
MBM to cattle, optimization of the rendering process
(how cattle feed is made, temperature, etc.) and
removing and incinerating any materials that
increase the risk of contracting BSE. They also
found that, in order to reduce R0 to a value less than
unity, at least two of the three control measures
should be applied. However, the authors stated that
even when all three control measures are in place,
infection routes other than via feed will remain
difficult to control, and therefore, R0 cannot be
reduced to zero. This is not a serious concern, as
they find that R0 is only 0.06 when transmission via
feed has been eliminated. In this study, then, the
primary use of R0 was as a measure of the efficacy of
control measures, with the goal of predicting
control measures that reduce R0 to below unity.
A drawback of this model is that calculating R0

relied on estimating many model parameters using
BSE data and procedures that have high uncer-
tainty. This resulted in a very wide confidence
interval around R0. The effects of clustering were
also ignored.
5.2.2. Scrapie. Matthews et al. (1999) developed a
model of scrapie transmission within a single flock of
sheep. The model includes both horizontal and vertical
transmission, as well as genetic variation in suscepti-
bility. R0 was calculated through the next generation
operator.

Using parameters for a single, well-studied flock of
Chevriot sheep, an estimate of 3.9 was obtained for R0

in a natural outbreak of scrapie between 1970 and 1982.
We note, however, that the detailed parameters needed
for this estimate, including the initial frequencies of the
susceptible and resistant alleles, are not likely to be
routinely available.

The real importance of this study, however, is in the
accompanying sensitivity analyses. R0 is found to vary
little with the vertical transmission rate, but is sensitive
to the horizontal transmission rate. Thus, measures
reducing the latter are recommended. Similarly,
slaughter of preclinically infected animals is able to
reduce R0 by over 90%. This paper thus encourages
using early diagnostic tests as effective control
measures. Finally, this model allows genetic control
measures to be evaluated, and predicts that inbreeding
may increase R0 if the susceptibility allele is recessive.
Although the precise value of R0 may be impossible to
determine in a given flock, this study demonstrates the
J. R. Soc. Interface (2005)
use of R0 as an important predictor of the efficacy of
control measures.

In a more recent study by Gravenor et al. (2004), the
estimated flock-to-flock value of R0 for scrapie in
Cyprus was between 1.4 and 1.8. This model uses a
four-compartment ODE system, and evaluates R0

using the survival function. The model is then fitted
to weekly incidence data to estimate three unknown
parameters.

This study also investigates the impact of interven-
tions, estimating both the epidemiological impact and
the cost of each intervention. The usefulness of each
control measure, however, is gauged not by changes in
R0, but by estimating the total number of farms affected
by the epidemic. The estimate ofR0 in this paper is thus
somewhat peripheral to the main conclusions of the
work.

5.2.3. Foot and mouth disease. Determining the
magnitude of R0 for FMD has also proved important,
guiding policies for culling and vaccination, the two
major control measures implemented for FMD.

Ferguson et al. (2001) determined R0 for FMD by
considering contact tracing data and the number of
susceptibles at equilibrium. They found that R0z4.5
and that is reduced to approximately 1.6 when control
measures were implemented. Also, by developing a
model of differential equations to describe FMD
dynamics and fitting this model to R0 values over
time, they were able to conclude that slaughtering on
all farms within 24 h of case reporting (without
necessarily waiting for laboratory confirmation) can
significantly slow the epidemic. However, they found
that even these improvements in slaughter times did
not reduce R0 below one. They concluded that it is
necessary to consider other interventions, especially
those capable of rapidly controlling infections estab-
lished in multiple regions.

Ring culling and vaccination were also explored
using the model. Ferguson et al. concluded that both
are highly effective strategies if implemented rigor-
ously, but that this may be very costly. The high initial
value ofR0 estimated in this study confirmed that FMD
is highly transmissible, and estimates of R0 were
essential in determining which control measures
might be effective against this pathogen.

Matthews et al. (2003) extended previous models
of FMD by defining an optimal control policy. This
policy included removing newly discovered infected
holdings and the pre-emptive removal of holdings
deemed to be at enhanced risk of infection. Matthews
et al. employed a simple SIR model to determine the
magnitude of the effect of different control policies on
a chosen value of R0. They found, not surprisingly,
that the level of control required to minimize the
number of animals removed increases with R0. They
also found that non-zero levels of control can
optimize the outcome of the epidemic even when
R0!1. In this case, the impact of the control
measure was assessed using the fraction of animals
removed.

Extending their model to a metapopulation,
Matthews et al. concluded that a greater level of
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control is needed in this case, but most importantly,
they found that to minimize losses to livestock
populations, R0 should be only sufficiently reduced;
there is a tradeoff between the amount by which R0 can
be reduced and the fraction of animals removed. The
key points which emerge are that total losses are not
highly sensitive to small variations in the control effort
around the optimal values, and that losses increase only
gradually as control effort increases beyond the optimal
value. They concluded that some leeway is acceptable
in practice, but that over-control is generally safer than
under-control when trying to avoid large losses to the
population. Similar arguments were also applied for
variation in R0; that is, over-control should be
implemented if there is any uncertainty or variability
in the value of R0.

5.3. Vector-borne disease

5.3.1. Dengue. Luz et al. (2003) used R0 to evaluate the
risk of dengue fever outbreaks in Rio de Janeiro, and to
assess possible control measures. R0 was calculated
from the survival function, assuming two spatial
compartments with high and low vector density,
respectively. Latin hypercube sampling of probability
density functions was used to explore the effects of
uncertain parameter values.

The goal of this paper was not so much to calculate
an accurate value ofR0, but to assess which of the many
unknown parameter values are most important to the
model. Luz et al. concluded that field estimates of
mosquito mortality and the incubation period of dengue
in mosquitoes are of critical importance. We note that
although dengue is a vector-borne disease and multiple
classes of infectives are defined in the model, the
definition of R0 used here is the number of infected
humans per infected human, not the square root of this
value as would be obtained by the next generation
operator.

5.3.2. Malaria. Although quantifying the incidence and
spread of malaria has an extremely rich history
(Garrett-Jones 1964), work in characterizing R0

for malaria is ongoing. A recent paper investigates
the incidence of malaria on an island in the Gulf of
Guinea with a population of 6000 (Hagmann et al.
2003).

The paper estimates the ‘vectorial capacity’ of
malaria (Garrett-Jones 1964), that is, the rate at
which future human infections arise from a currently
infective human host. This capacity C is estimated
using maximum likelihood fits to observed age-
prevalence data, and R0 is predicted as a function of
C. We note once again that the value of R0 thus
obtained corresponds to the definition provided in
§2.1, not that of §2.2. The paper also reports detailed
incidence data, stratified by age, sex, residence of
patient and grade of malarial infection. Finally, a
detailed survey on the use of mosquito nets, dwelling
types, etc., was conducted; fully 17% of the population
participated in the survey.

The low value of R0 obtained in this study (1.6) was
used to justify the overall conclusion of the work that
malaria can probably be eliminated from the island
J. R. Soc. Interface (2005)
through simple control measures. However, calculating
R0 was otherwise incidental; arguably the most
important findings in this study were obtained through
the detailed surveying and reporting of incidence and
demographic data.
5.3.3. West Nile virus. Wonham et al. (2004) derived a
system of ODEs to describe the behaviour of West Nile
virus. Their model consisted of susceptible, infectious,
recovered and dead birds, and larval, susceptible,
exposed and infectious mosquitoes. The next gener-
ation method was used to calculate R0 from this model
in order to evaluate the ability of the virus to invade the
system. The calculated value ofR0 was then interpreted
biologically as the square root of the product of (i) the
disease R0 frommosquitoes to birds and (ii) the R0 from
birds to mosquitoes. Each of theseR0 values was further
analysed as a product of disease transmission and
infectious lifespan in case (i) and the product of the
transmission probability, the number of initially
susceptible mosquitoes per bird that survive the
exposed period and the bird’s infectious lifespan in
case (ii). R0 was then used to establish a threshold
mosquito level, above which the virus will invade a
constant population of susceptible mosquitoes.

The R0 value derived was then used to evaluate
public health policy markers. Two such policies were
evaluated: mosquito control and bird control. It was
demonstrated that a small increase in mosquito
mortality can lead to a disproportionately large
increase in the outbreak threshold. More surprisingly,
however, R0 was used to show that reducing crow
densities would have the opposite effect and actually
enhance disease transmission (unless extremely low
densities limited mosquito biting rates). Thus, R0 was
used to show that reducing the initial mosquito
population below the calculated threshold would have
prevented the West Nile outbreak for New York in
2000. Conversely, bird control would have had the
opposite effect.
6. DISCUSSION

Our review of the practical use of R0 has focused,
largely, on literature from a 2 year period, 2003 and
2004. The number of papers included here—and our
review was by no means exhaustive—testifies to the
current relevance of this important concept.

The methods used to calculate R0 from incidence
data vary. Model fitting using standard optimization
techniques is often used to estimate parameters, which
are then used to determine R0 by either the survival
function or next generation methods. Estimating the
initial growth rate, r0, has also been widely used. For
multiple classes of infectives (e.g. vector-borne disease),
we find examples both where R0 is defined per
generation, and examples where it is defined per
infection cycle (see §2.2). Owing to the usual limitations
in using real data, we note that models typically used
‘in the field’ are simple, deterministic and non-
structured (but see Ferguson et al. 1999; Lloyd-Smith
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et al. 2003; Matthews et al. 2003; and Riley et al. 2003
for counter examples).

The basic reproductive ratio for emerging or
endemic pathogens described above has been estimated
for two main purposes. First, R0 is estimated in order to
gauge the relative risk associated with a pathogen.
These estimates are then used to compare the
transmissibility of the disease to other well-known
(and better understood) pathogens. Unfortunately,
some time is needed to accrue sufficient incidence
data for these estimates of R0, and typically, R0 is only
quantified after the epidemic has run its course, or is at
least well established. The degree to which R0 for one
emerging infectious agent might be predictive of future
novel pathogens is questionable (Mills et al. 2004).
Furthermore, a numerical estimate of R0 for a specific
disease does not, in and of itself, inform public health
measures. These values are instead used to justify
severe or costly control measures (e.g. FMD; Ferguson
et al. 2001; Matthews et al. 2003), or less severe, more
sustainable measures (e.g. malaria on Principe; Hag-
mann et al. 2003).

Evaluating these control measures reveals the
second, and more important, use of R0 in the recent
literature. In most of the studies outlined above, R0 is
evaluated both before and after a putative control
measure is applied, with the aim of determining which
measures, at what magnitudes and in what combi-
nations, are able to reduce R0 to a value less than one.
The results of these efforts have clearly offered useful
practical guidelines: in some cases the results are
counter-intuitive (e.g. West Nile virus: Wonham et al.
2004), in many cases they are sobering.

Although R0 offers a simple, universal measure of
control efficacy, it is important to note that using R0 for
this purpose ignores other important issues, such as the
timing of secondary infections, or the negative impact
of control measures on the population. For example, it
is possible that some patterns of quarantine may be
roughly equivalent in their effect on R0, but may have
different effects on the growth rate of the epidemic.
Matthews et al. (2003) discuss the trade-off between
reducing R0 and culling as few animals as possible;
Lipsitch et al. (2003) discuss similar trade-offs between
reducing R0 and burdening the population with
excessive quarantine. These studies suggest that R0

may not always be the best overall measure of control
efficacy. In contrast, the total mortality or morbidity,
the total number of affected farms and other such
measures may offer more practical indicators of control
success, and can be balanced against the associated
costs (e.g. Gravenor et al. 2004). We argue that R0 may
be somewhat overused in evaluating control measures,
presumably because it is more readily calculated than
these alternative indicators, and is widely recognized
and understood.

For host–pathogen interactions, R0 stresses the role
of the pathogen. An alternative, more host-centred
characterization has been suggested by Bowers (2001).
Nicknamed the basic depression ratio, D0 measures the
degree to which the infected host population is
depressed below its uninfected equilibrium level.
Consideration of both R0 and D0 allows modelling of
J. R. Soc. Interface (2005)
the complex trade-offs in the evolution of host–
pathogen interactions.

When control is targeted at specific subgroups, R0 is
not a good indicator of the required control effort, and
the type-reproduction number, T, has been suggested
instead (Roberts & Heesterbeek 2003; Heesterbeek &
Roberts in press). This quantity is equivalent to R0 in
homogeneous populations, but in heterogeneous popu-
lations it singles out the control effort required to
achieve eradication when control is targeted towards a
particular host type (or subset of types), rather than
the population as a whole, assuming the other types
cannot sustain an epidemic by themselves. In many
cases, T is easier to formulate than R0 and both share
the same threshold behaviour.

This work followed from a mini-symposium on the same topic
at the Society for Mathematical Biology Annual Meeting,
Ann Arbor, Michigan, 2004. We are indebted to Hans
Heesterbeek and an anonymous referee for a number of
insightful suggestions; we also thank Sally Blower, Erin
Bodine, Romulus Breban, Elissa Schwartz, Raffaello Vardavas
and David Wilson for valuable discussions. We are also
grateful to the Natural Sciences and Engineering Research
Council of Canada and to the Ontario Ministry of Science,
Technology and Industry for their support.
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